Formation of 3',6'-anhydrosucrose by Mitsunobu dehydration of sucrose

R. D. GUTHRIE*, IAN D. JENKINS**, SAN THANG, AND RYOHEI YAMASAKI School of Science, Griffith University, Nathan, Queensland, 4111 (Australia) (Received July 11th, 1987; accepted for publication, November 20th, 1987)

We have reported¹ that treatment of sucrose with triphenylphosphine and diethyl azodicarboxylate in N,N-dimethylformamide gave a 1:1 mixture of the 3',4'-anhydro derivative 1 and a second derivative, tentatively assigned the 1',4'-anhydro structure 2. Compound 2 was considered initially to be 3',6'-anhydrosucrose (3), but the reported² physical constants {m.p. 146°, $[\alpha]_D$ +104° (methanol)} were significantly different from those {m.p. 168°, $[\alpha]_D$ +123° (methanol)} that we obtained and hence the closely related structure 2 was suggested.

2,3,4,6,3',6'-Hexa-O-acetyl-1',4'-anhydrosucrose {m.p. $105-107^{\circ}$, $[\alpha]_D$ + 142.5° (chloroform)} has now been prepared³, and the ^{13}C - and ^{1}H -n.m.r. data are different from those of the hexa-acetate 4 {obtained as an oil, $[\alpha]_D$ + 69° (chloroform)} of 3. The ^{1}H -n.m.r. and i.r. spectral data of an authentic sample² of 3',6'-anhydrosucrose (3) show unequivocally that the second compound formed in the Mitsunobu dehydration of sucrose is indeed 3',6'-anhydrosucrose. We can offer no explanation for the discrepancy in the physical constants, although 3 does crystallise as a hydrate, which might account for the difference in m.p.

The formation of 3',6'-anhydrosucrose is consistent with our observation¹ that the 3',4'-epoxide 1 is the only product formed when the reaction is carried out in the presence of acetic acid (2 equiv.). Under these conditions, positions 6 and 6' are blocked by acetate groups, thus preventing the formation of a 3',6'-anhydro ring; the Mitsunobu reaction can be used^{4,5} to selectively esterify primary hydroxyl groups in sugars.

The formation of 3',6'-anhydrosucrose is more reasonable on mechanistic grounds than is formation of the 1',4'-isomer. The transition state for the latter reaction involves nucleophilic attack by HO-4' on the neopentyl-like position 1'. Attack by the HO-3' on position 6' would be expected to be favoured kinetically.

The ¹H-n.m.r. spectrum of the hexa-acetate (4) of 3 is also more consistent

^{*}Present address: N.S.W. Institute of Technology, P.O. Box 123, Broadway, N.S.W., 2007 (Australia).

^{**}Author for correspondence.

TABLEI

 $^{\mathrm{i}}$ H-n.m.r. data for 3′,6′-anhydrosucrose (3) and its hexa-acetate 4

Compound	Chemical shi	al shifts (8	fts (8 scale)											
to a constitution of the state	H-I	Н-2	Н-3	H-4	Н-5	H-6a	99-Н	H-1'a	H-1'b	Н-3′	H-4'	Н-5'	H-6'a	q.9-H
3 4.c 4 6.c	5.48	3.64	3.78	3.45	3.91 4.65	3.85	3.77	4.04	4.04 4.06	4.32	4.53	4.47	3.97	3.76 3.26
	J Values (Hz)	s (Hz)												
	1,2	2,3	3,4	4,5	5,6a	5,66	6a,6b	I'a,I'b	I'a,I'b 3',4' 4',5'	4',5'	5',6'a	8,9,5	6'a,6'b	
ey 44	3.8	9.9	9.3 9.3	9.8	2.3	4. 4. 8. 4.	12.5	11.8	2.2	0 0	99	~0 1.3	13.0 8.5	

⁴In D₂O. ⁶C₆D₆. ^cAt 300 MHz.

308 NOTE

with the 3',6'-anhydro structure than the 1',4'-structure. Thus, the small (1.3 Hz) coupling constant assigned to an (unusual) long-range coupling between H-1'b and H-5' is clearly a 6',5' coupling constant. The H-n.m.r. data and our (new) assignments for 3 and 4 are given in Table I.

HOCH₂ OH

HOCH₂ OH

$$CH_2OH$$
 CH_2OH
 $HOCH_2$
 CH_2OH
 $HOCH_2$
 CH_2OH
 $HOCH_2$
 $HOCH_2$

ACKNOWLEDGMENTS

We thank Dr. K. Čapek for details of the synthesis of 1',4'-anhydrosucrose, and Professor J. G. Buchanan for i.r. data, a sample of 3',6'-anhydrosucrose, and useful discussions.

REFERENCES

- 1 R. D. GUTHRIE, I. D. JENKINS, S. THANG, AND R. YAMASAKI, Carbohydr. Res., 121 (1983) 109-117.
- 2 J. G. BUCHANAN, D. A. CUMMERSON, AND D. M. TURNER, Carbohydr. Res., 21 (1972) 283-292.
- 3 K. ČAPEK, T. VYDRA, AND P. SEDMERA, Collect. Czech. Chem. Commun., in press.
- 4 S. BOTTLE AND I. D. JENKINS, J. Chem. Soc., Chem. Commun., (1984) 385.
- 5 I. D. JENKINS AND M. B. GOREN, Chem. Phys. Lipids, 41 (1986) 225-235.